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ABSTRACT

Attempts are made to give a clear description of self-similar spacetimes,
which is proving to be very useful in astrophysics and general relativity. We
have attempted to study the nature of naked singularity and black hole,
which are also likely to take place in self-similar spacetimes. The metric for
collapsing dust cloud is utilized in this formalism. Mathematica was used to

compute the details of the formalism and to visualize the graphics.
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Chapter 1

Gravitational Collapse in

Self-Similar Spacetimes

1.1 Introduction

Gravitational collapse is an important issue in general relativity and it is
widely believed that it may be responsible for high energy objects in our
universe. Energy theorems in relativity have shown that under reasonable
energy conditions a matter cloud with sufficient mass would undergo a grav-
itational collapse. General relativistic field equations involve a system of
highly nonlinear partial differential equations and hence analyzing a gravita-
tional collapse scenario in general even in spherically symmetric spacetime is
virtually impossible. Self-similar spacetimes have therefore been given con-

siderable attention in recent applications. Due to the symmetry property of



self-similarity equations in self-similar spacetime become an ordinary differ-
ential equation and therefore the study of a phenomena becomes much easier
to analyze. In this study we therefore use self-similar spherically symmetric
spacetimes to examine the gravitational collapse and its features.

In astrophysics and cosmology the self-similar models are of great interest to
the relativists and cosmologist alike. It is worthy to start with the very def-
inition of self-similar spacetimes. A self-similar spacetimes is characterized

by the existence of a homothetic Killing vector field (Joshi, 1993).

1.2 Self-Similar Spacetimes and Path of Pho-

ton

A spherical symmetric spacetime is self-similar if it admits a radial area

coordinate r and an orthogonal time coordinate t such that for the metric

components g and g, we have
gu(kt, k’r) = gu(t, T')

grr(kta kT‘) = gﬂ‘(t! T)
for all k > 0. Thus, along the integral curves of the Killing vector field all

points are similar.

A spherical symmetric spacetime (SSS) in co-moving coordinates is given



by general form

ds® = —A(t,r)dt* + B(t, r)dr? + r2C(t,r)dQ2?

where dQ? = d? + sin?0d¢?. If SSS is self-similar, self-similarity condition

must hold, it must have a homothetic Killing vectors, which means ¢ = kt,

r = kr and the metric becomes,

ds® = —A(kt, kr)dt® + B(kt, kr)dr? + r2C(kt, kr)dQ?
and parameters A,B,C are such that
A(t,r) = A(kt, kr)

B(t,r) = B(kt, kr)
C(t,r) = C(kt, kr).

The collapsing dust cloud is described by the self-similar metric,

ds® = —dT? + R"dr? + R*(d6* + sin*0d¢?) (1.1)
where
g = gﬁ(to(r) 1)
R? = gﬁ(a— ;)r%
R= (g)%F(a - é)ir



To check the metric, one can proceed as follows:

Alt,r) =-1

Bt = B = OFa- 54+ - D)
Blkt,kr) = (3)} F(a - )4 + (a - 2 =R

B(t,r) = B(kt, kr)

2
Cltr) = & = ()} Fa - )
_Sipr My B
Olhkt,kr) = (DI F(a- )E = 5

C(t,r) = C(kt, kr)

The above shows that the given metric is self-similar. The radial null geodesics
in this metric is defined by ds® = 0 and k% = k® = 0 (Tolman, 1934). The

geodesic equations for kT and k" from Lagrangian equation are

— — kT + R*k™ + R* + R%sin0k*’ (1.2)
oL _ d oL,
8T  d\'OkT
20R" _ d 8(=k")
Ko = ok J
T :
%’f’\- +RRE =0 (1.3)

11



Similarly,

oL d 8L
L
OR'R'K™* = m"fi—}fk’ +2R" ‘3’“;
i’i N %k’rk’ N %’k‘"’ _0 (1.4)

Let k° be tangent to radial null geodesics (i.e,k%, = 0 = k3k®) for the
metric in eqn (1.1) and ggk%k® = 0, for null condition. we have for radial

null geodesics from eqns (1.3) and (1.4),
grrkrz + g,.-r){{.'r2 =

Q‘I"I"CT2 = —grrkrz
k™

e gr'r
kr? arr
E = _grr = R'
kT grr
r 1 T
k" = Ek
T
k_ =R g =R
kr dr
T .
% — _RRK"

where ) is affine parameter. The Kretschmann scalar of the metric is obtained

as
16(21a*r? — 10art + 5t*)

= 27(-3ar + t)*(—ar + t)*

12



If we assume that 7 = 7 and ¢t = qr we get

_ 16(21a%r? — 100272 + 5(a2r2)
27(=3ar + ar)?(—ar + ar)*

which gives us,

K=o
Therefore,the points of unboundedness i.e.,, K = 0o occur at (ar,r). Self-

similarly implies that all variables of physical interest may be expressed in

terms of the similarity parameter X = L

X=£,t=Xr
T
dt = Xdr +rdX
dt ,
dr =1
Xdr rdX ,
& T =8
rdX
X + - =R
rdX ;
ik
dX R -X
f dr—fR,
= —In[-R' + X]

Using the original values of R’ and X, one finally obtains,
t
r=-3 2% 3g G.FT'+2% 3§ Ft+6 r(a— ;)*.‘.B
The above is the possible path of photon in gravitationally collapsing objects.

13



1.3 Gravitational Collapse in Self-Similar Space-

times

We would like to examine the determination of curvature strength of the
naked singularity in order to decide on its seriousness and physical relevance
and the mathematical calculations of Christoffel Symbols, Riemann Tensors,
Ricci Tensors and Kretschmann Scalar of the metric.

The collapsing dust cloud is described by the self-similar metric,
ds* = —dT? + R"dr® + R*(d6? + sin®0d¢?) (1.5)

where

Ri = %\/f'(to(r) -

3 t
RY = SVF(a- )i

= S)ipe- 5

R=(3) F@-Dir
Let b= (%)gF and which gives

R=bla-5)ir

r

Here,b is constant and after differentiation we get

b(3ar — t)
L Gl 1.6
3r(a - 1)3 L6

From metric,
¥}

g1 = -1, gn= R

14



gaz = Rz, g4 = stinQB
To find some calculations, we have to use the following equations,

Christoffel Symbol are denoted by,

1
A
Fpu = igd\k (gkU.p + Gukw — gpu.k)

Riemann Tensor

Rabcd = gdCRt{le

Kritchmann Scalar

K = R*?Rpeq

Ricci Tensor

R;.w = F::;,A - FA + PA Fga' - Fz,\rt‘,

7o B

It is necessary to compute the Christoffel symbols for equation (1.1), from
which we can get the curvature tensor. If we use labels (1,2,3,4) for (T, 7,6, ¢)

in the usual way, non zero Christoffel symbols are given by using Tensorpak.m

package, namely,

1
1 212 _
T, = -2-,9“(911,1-1-911_1—9(11,1))’*'29 (9211 + 9121 — gn12),
) 2t
D = 33027 —dart+ 82)’
2
B s e
bag = —3ar + 3t’



I

2

=3ar + 3t’

2t
3(3a?r2 — dart + 2)’

2b?(3ar — t)t
27r*(ar — t)(a - ¢
2t
—9ar3 + 12ar2t — 3rt?’
dar -t

3ar? — 3rt’
3ar —t

3ar? — 3rt’
2

—3ar + 3t'
3ar -t

3ar? — 3rt’

2., t%
3br(a r) '

3r(—ar +t)
3ar —t
cot 8,

2

—3ar + 3t’
3ar —t
3ar? — 3rt’

cot 91

2.
3

)

Vsl s
- b,

31‘(07’ - t) sin® @
3ar —t

’

— cos@siné,

16



From these we get the following nonvanishing components of the Riemann

tensor
Ripiy = 2(3ar +t) )
9(3ar — t)(—ar +t)?
By = — 2(3ar +t)
= 9(3ar — t)(—ar +t)?’
2
Ry = —r 2
e 9(—ar +t)?’
2
R = —
1331 9(—ar + t)?’
2
B = Toarvo?
2
Rua = g
B 2(3ar +1t)
R2112 - _g(sar_t)(_ar+t)2’
2(3ar +1t)
R = 9(3ar — t)(—ar + )%’
4t
Rgszs = 9(—3ar + t)(—ar +t)*’
4t
Rass2 = Tg(Z3ar +t)(—ar + t)?’
4t
Roqa = 9(—3ar +t)(—ar + t)?’
41
Rosz = ~9(—3ar + t)(—ar + t)?’
2
Rans = M'
2
Raiz1 = 'm'
4t
_ __._______._-—-———'_—___l
Rsms = Tg(=3ar +t)(-or + L)
4t
Rz = §_(-:.‘3_a—r_+ t)(—ar +t)?

i 4



4

Ryq = e

Ragg = (31_1%_355’

Roa = “(_3;3_?,:?'

Ry = —9(—3ar - :)t(—ar o
fua = 9(-3ar + :)t(_ar vl
Ryse = —9-———(_0:+ el

Ryga = 4

9(-ar +t)?’
We get non-zero values of Ricci Tensor

2
3(3a%r? — dart + t?)
2b%(—3ar + t)
2 = 3
27r%(ar = t)(a — £3)
2%r(a — £)}
9ar — 3t
20%r(a - f)fsinza
9ar — 3t

Ry = -

R3y = -

Ry = -

Scalar Curvature is,
4

3(3a%r? — 4dart + t?)

and Kritchman Scalar is,

16(21a%r? — 10art + 5t%)
27(-3ar + t)?(—ar + t)*4

’

18
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We have th i i i '
e geodesics equations for kT and k" from Lagrangian equations:

dk* _ 11 g2 1
—5 = ~RRk (1.11)
For radial null geodesics, one has,
kT —_ RI r 1 T 12
o =k A2

Solving the above equations we get

) -1
R
i g 1.13
= ( ,d)\) ( )

. =f
1 e
kM = — — 1.14
R (/ R dA) (1)
dT
d_po_ 1 __x) (1.15)
dr Cla - X)3
1 i = 3r
The quantity C here is defined by C = jz—=5-
From the equation for dt/dr, it is positive sign solutions, which are outgoing
and terminate at the singularity with positive value of X.
The point t =0,7r =01is a singular point of the above differential equations.
The nature of the limiting value of similarity parameter X = ! plays an

important role in the analysis of non-spacelike curves that terminate at the

singularity and reveals the exact nature of the singularity. Using equation

and 1'Hospital’s rule we get

m o om Eo
Xo = t__,lé.rrn_.o; T t—0,r—0dr C(a - )(0)g

=¢'f(X0)=0 (1.16)

19



If f(X) = 0 has a real root Xo which give the direction tangent to the integral
cgrves at the singularity. It is possible that a single null geodesics (X = Xo)
in the (¢,7) plane would escape from the singularity.

We shall restrict to positive sign solutions which represent outgoing geodesics,
the equation of outgoing geodesics in the for r = r(X) from the above X = L

r

we can write using eqns (1.8) and (1.11)

dX

T

s il T

1
gt AT
C(a - X)} X:‘ (117)

Integration of the above equation yields the equation of geodesics, which can

be written as

r = Dezxp Cla=X)3 -dX (1.18)
1-XC(a—- X)3

Here D is a constant that labels different integral curves. We have already

established the fact that if the singularity is to be naked, f(X) = 0 must

have at least one real positive root Xj.

3a-X)i 3a-X)} a-X
XC?3 2XC? XC

r= Dezp [

| Blogl-1+(a - X)iXC

b dor (1.19)

We now examine the curvature strength of the naked singularity forming
at t = 0,7 = 0.Because even though a naked singularity may form during

gravitational collapse, if it is not a strong curvature singularity, it may not

20



be considered a serious counter-example to the cosmic censorship hypothesis.

A sufficient condition to engyre a strong curvature singularity is given as
lim & Ropkk® # 0

along at least one non-spacelike geodesic terminating at the singularity with
the value of the affine parameter k = 0 at the singularity. The stronger sense
in which a strong curvature singularity is defined is given by the requirement
that the above limiting condition must be satisfied along all non-spacelike
geodesics terminating at the naked singularity in the past(Tipler, 1977). Such
a strength was examined earlier for the self-similar case along the radial null
geodesic and also along two other simple null geodesics (Ori and Piran, 1990)
that either come out from or fall into the singularity at (0,0).

For radial null geodesic, the metric is defined by ds? =0 and k¢ = k® = 0

( Tolman, 1934). The curvature strength for the self-similar case along the

radial null geodesic of spherical symmetric spacetimes is
¥ = Rapk®k? = R\ kT + Rppk™ (1.20)

where Ry, is Ricci tensor. Substitute eqns (1.7)(1.8)and (1.10) in eqn (1.20),

we get

2

2 2y 2 2b2(—-3ar + t)

= - kl"
v 3(3a?r? — 4art + t2) 27r%(ar — t)(a - £)2y

(1.21)

and we used eqn (1.2) which gives

~ —2b%(3ar — t) + 2b%(t — 3ar)
V= 27r2(3ar — t)(a — X)3

21



i = 4b2(—30.7' + t) kr: (1.22)
27r2(ar — t)(a — X)5

The limy_o k%) in general can be computed as follow. Multiplying i by k*

and taking the limit as k — 0, the above gives
li 2 apb .2
kl_I.‘%k Rqpkk —kl_{r(l)k Y

= lim
k—0

2( r? .2
4b ( 3(1T+t)k k : (123)
27r¥(ar — t)(a — X)3

Using the fact that as singularity is approached, k — 0,7 — 0 and X — Xo

(positive root) and using I'Hospital’s rule, we observe

lim k2¢ = lim (1.24)

k—0 k—0

4b*(=3ar + t)k™ k2 50
27r2(ar — t)(a — X;)3

Thus along radial null geodesics strong curvature condition is satisfied. The
above condition along future directed radial null geodesics coming out from

the singularity.

22
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Figure 1.1: The profile of the Kretschmann scalar of the metric with an
orthogonal time coordinate t and a radial area coordinate r
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Figure 1.2: The 'proﬁle of the Kretschmann scalar of the metric with - an

‘orthogonal time coordinate ¢ and self-similar scale factor a.
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Figure 1.3: The variation of the Kretschmann scalar K of the metric with

an orthogonal time coordinate ¢
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with an orthogonal time coordinate ¢

31



Figure 1.5: The Pmﬁlu of the gurvature strength of the metric
with an orthogonal time coordinate t and a radial area coordinate r
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£(r_, x_] = (-Log[-x +x])
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r(i_):=r[i] =r[i-1]+h

x[i_ ) t=x[i] =x[1-1) +hefr(i-1], x[1-1])
euler = Table[(r[k], x[k]}, (k, 100)]
eulerplot = ListPlot[euler,

PlotStyle » (PointSize[0.015], Red), M.lh..b.ll -+ ("R", "X"}, PlotJoined + False];



Untitled-1

I 1 91659
LO1 191746 0.51 1.99595
102 191843 052 199198
103 19195 033 198812
1.04 192067 0.54 198435
105 192194 055 198067
1.06 19233) 056 197709
107 192478 0.57 19736
LR 5 058 197021
1.09 192802 439 1.9669
(i on 06 196372
11193165 0.61 196062
i oS 062 195761
L1 153868 063 19547
.14 1.93784 S SgS
98 15 065 194918
116 194245 0.66 194656
LT ] 0.67 194404
118 1.94746 068 194162
119 1.9501 i3 13a9a
B
121 1.95569 0.12 1'93291
122 195862 0.73 193098
123 196165
e Locar 0.74 192915
075 192742
125 1.96799 0.76 192578
126 197131 077 192425
127 197471 0.78 192282
1.28 197821 079 192148
1.29 1.98181 0.8 192025
1.3 1.98549 081 191911
1.31 1.98927 0.82 191807
1.32 199313 0.83 191714
133 1.99709 0.84 19163
1.34 2.00114 085 191557
1.35 2.00528 0.86 191493
1.36  2.0095 0.87 19144
1.37 2.01382 0.88 191396
138 2.01822 089 191363
1.39 2.02271 09 19134
14 202729 091 191326
1.41 203195 092 191323
142 2.0367 093 19133
143 204154 094 191347
1.44 2.04646 095 191374
1.45 2.05146 0.96 191411
1.46 2.05654 097 1.91458
1.47 2.06171 098 191515
1.48 2.06695 099 1.91582
1.49 2.07228 ! 1 Q1ASQ

V1S 2.07769)

34



2.0'75L °
@
{ ]
[ ]
2.05 '3
L
[ J
[ ]
2.025 .-'

Figure 1.6: The iteration plot of the dimensionless parameters X and R (we

set the initial values, X = 2 and R = 0.5)
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Chapter 2

Self-Similarity in Newtonian

Gravity

2.1 Introduction

Scale-invariance is one of the most fundamental characteristics of gravita-
tional interaction in both Newtonian gravity and general relativity. This
implies that if we consider appropriate matter fields, the governing partial
differential equations are invariant under scale transformation. Due to this
feature of the governing equations, there are self-similar solution, which are
invariant under the scale transformation.

When a theory has no characteristic scale, we can expect scale-invariance
of the theory. In Newtonian gravity, the gravitational constant G, with di-

mension M~'L3T~2, is the only dimensional physical constant in the held
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equations, where M, L and T denote the dimension of mass, length and time,
rgspectively. It is impossible to constant a physical scale only from G. In gen-
eral relativity, there exists another physical constant ¢, which is the speed of
light, with dimension LT!. In spite of these two dimensional constants, no
characteristic length scale can be constructed from these physical constants.
However, due to the existence of these two dimensional constants, general
relativity is qualitatively different from Newtonian gravity with respect to
scale invariance. If we consider quantum gravity, the Planck constant h ap-
pears, with dimension M L?*T~!, so that there exists a characteristic scale

Iy = Gihi/c? which is called the Planck length.

2.2 Self-Similarity in Newtonian Gravity

Since Newtonian gravity postulates an absolute system of space and time,
we can directly apply the general formulation of self-similarity to this system

(Baenblatt, 1996). A solution is called self-similar, if a dimensionless quantity

Z(t, ¥) made of the solution is of the form
. T
Z(t,5)=2 (a(t)) (2.1)

where 7 and ¢ are independent space and time coordinates, respectively, and
a(t) is a function of ¢. This implies that the spatial distribution of the char-
acteristics of motion remains similar to itself at all times during the motion.

If the function a(t) is derived from dimensional considerations alone, i.e., if it
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is uniquely determined so that Z/a(t) is dimensionless, the self-similarity is
called complete similarity or similarity of the first kind (Baenblatt, 1996).In
more general situations, the characteristic length or time scale may be con-
structed by the dimensional constants in the system. Then, the function
a(t) cannot be uniquely determined from dimensional considerations alone.
In such cases, self-similarity is called incomplete similarity or similarity of
the second kind (Baenblatt, 1996). For example, when we have the con-
stant sound speed c, and no characteristic scale, then a(t) is uniquely deter-
mined as a(t) = c,t.In this case, the similarity is called complete. However,
when we have a characteristic length scale [ besides the sound speed c,,then
a(t) = 1'~%(c,t)* is possible and the constant a may not be determined from
the governing equations. In this case, the similarity is called complete. The
constant a may be determined by the boundary conditions. It should be
noted that the dimensional constant could appear not only from governing
equations but also from boundary conditions.

Here, we give two important examples of completely self-similar solutions
in Newtonian self-gravitating fluid mechanics. The basic field equations for

spherically symmetric hydrodynamics of a self-gravitating ideal gas in Eule-

rian description are given by

%i: = d4mrp, | (2.2)
oM oM
ot Ve = O (2.3)
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0 1 9 5

— oo et e D GM

at(P’U) rg 3T(T [0, )+ ar - p T2 o 0! (24)
dp 1 0

3 T g (rev) 0, (2.5)

where p,v, M and G denote the mass density, radial velocity, total mass

inside the radial coordinate r, and gravitational constant, respectively.

2.3 Isothermal Gas

First we consider an isothermal gas as a gravitational source. Since the

isothermal gas is a relevant description of cold molecular clouds in galaxies,
self-similar solutions have been intensively studied in Newtonian gravity in
modeling the star formation process (Hunter, 1977). It has been revealed

that self-similar solutions play important roles in the gravitational collapse

of an isothermal gas (Harada et al, 2003).

For an isothermal gas that obeys p = c?p, where ¢, is the constant speed of

sound with dimension LT -1 jt is possible to construct a characteristic scale

from c, and G. We introduce the dimensionless self-similar coordinate

Gt (2.6)

F= —

r
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for self-similar solutions. Then we also introduce the dimensionless functions

U,Pand m:
U(T’t‘) = —CSU(rrt)! (27)
- CEP(Tat) 28)
p(rt) = A (
3
M) = Stmnd (2.9)

G

We assume that the above-defined functions U, P and m depend only on z.

From this assumption, eqn (2.2) become

— = 4mrip, (2.10)
or
oM .
i 4rrep = 0,
9 (citm _ dy? P ) _ 0
or\ G 4nGr2)
dom P _
Gor G
om P
By integrating equation(11) with respect to r, we get
Pr P
— Bk e 2.12
&5 etz (2.12)
dm d(£)
2 - 4z (2.13)
m = P(-2)7 (2.14)
-2'm' = P, (2.15)
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In a similar manner, one can obtain
1

_ 1
™= PU+), (2.16)
p = 2P2-PEU+Y)
(zU+1)2—22 (2.17)
U (2U + 1)[P(zU + 1) — 2]
(zU +1)2 — 22 1 (2.18)

where the pri .
prime denotes the derivation with respect to 2. The self-similar

solutions f i
or an isothermal gas are obtained from these ordinary differential

equati _simi .
quations. Self-similar solutions scale for the scale transformations ¢ = at,

f = ar, as
u(F, 1) = wv(nt), (2.19)
=n - PNt
o0 = E0Y (2.20)
MR = aM(nt), (2.21)

where a is a constant. The basic equations for self-similar solutions are

singular at the center and at the point at which (U + 1)* — 2z* = 0 is

satisfied, which is called a sonic point.

2.4 Polytropic Gas

Next, we consider a polytropic gas as a gravitational source. A polytropic

gas obeys the equation of state p = Kp", where 7 is the dimensionless con-

stant called the adiabatic exponent and K is a constant with dimension
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M- L¥=1T-2 As in the isothermal gas system, it is impossible to con-
struct a characteristic scale only from G and K if 4 # 2. For the exceptional
case, 7 = 2, the system has a characteristic length scale | = \/1_{—/6 but
even in this case the self-similar variable 2 is uniquely constructed. Then,
complete similarity is applicable to this system.

For the polytropic case, we introduce the dimensionless self-similar coordi-

nate
VE(-t)?
S e 2.22
* (41rC)u'5_ur : )
Then we also introduce the dimensionless functions U, P and m :
u(r,t) = —(4rG)" TIVK(~t)'U(r 1), (2.23)
Kt P(r,t)
i) = . 2.24
p(r,t) (4‘”0)“_&?""_3“ ( )
M(rt) = K} (=t)*%m(r,t) (2.25)

(4”) li:-llG]):-ll .
We assume that the above-defined functions U, P and m depend only on z. In
the polytropic case, the sonic point is defined by (2-~r-2U) - 7:"4? = 0.

Self-similar solutions scale for the scale transformations { = at, 7 = ar, as

u(f,f) = o' Tu(nt), (2.26)
p(F,0) = z—(;—_t’)- (2.27)
M(#8) = o' "M(nt), (2.28)
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where a is a constant. In this case, the scaling rates for r and t, which keep
z constant, are different from each other.

It'should be again emphasized that in both the isothermal and polytropic
cases, the self-similarity is complete since the self-similar variable z can be
obtained from dimensional considerations alone. This is because there are
only two dimensional constants in the system, while there are three indepen-

dent dimensions M, L and T.
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Figure 2.1: The comparison of the self-similar functions of the mass density

p, radial velocity v and total mass M inside the radial coordinate r with

varying self-similar coordinate z of isothermal gas
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Figure 2.2: The Proﬁle of dimensionless self-similar coordinate z of polytropic

gas. with an orthogonal time coordinate t and a radial area coordinate ¥
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ClearAll["Global «")

Clear(f, m, a]

fla ,m ] = (a)y* ) ym

m

a?

h=1;

a[0]) = 2;

m[0] = .5;

a[i ] :=a[i] =a[i-1]+h

m(i ] :=m(i]) =m[i-1] +h«x£fla[i-1], m[i-1]]

euler = Table[{a[k], m[k]}. {k, 50}]
eulerplot = ListPlot[euler, PlotStyle —» {PointSize[0.02], Red},

AxesLabel » {"a", "m"}, PlotJoined -+ False, PlotRange - {.60, .90}]
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Figure 2.3: Iteration plot of the self-similar nass function of the metric(we

set the initial values ¢ = 2 and m = 0.5)
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Figure 2.4: The comparison of the self-similar functions of the mass density
p, radial velocity v and total mass M inside the radial coordinate r with

varying self-similar dimensionless constant a of polytropic gas
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Chapter 3

Self—Similarity in General

Relativity

3.1 Introduction

In general relativity, the concept of self-similarity is not so straightforward
because general relativity has general covariance against coordinate trans-
formation. This implies that the definition should be made covariantly in
general relativity. In the following, we use units where the speed of light
c is unity. In this choice of units, T = L is obtained and the velocity is
dimensionless.

In general relativity, the term self-similarity can be used in two ways. One is
for the properties of spacetimes, the other is for the properties of matter fields.

These are not equivalent in general. The self-similarity in general relativity



similarity
s defined i
s defined by the existence of a homothetic vector § in the spacetime, which
satisfies

L"Eguv = 20’9#1" (3.1)

where g, is the metric tensor, L¢ denotes Lie differentiation along £ and

@ 1S a constant. This is g Special type of conformal Killing vectors. This
self-

similarity is called homothety. Ifa #0, then it can be set to be unity by

a constant rescaling of - lfa=0, t.e,L¢g,, =0, then € is a Killing vector.

Homothety is a purely geometric property of spacetime so that the physical

quantity does not necessarily exhibit self-similarity such as £, Z = dZ, where

d is a constant and Z is, for example, the pressure, the energy density and

so on. From equation (3.1) it follows that

CfRﬁep =0, (32)

and hence
LR =0, (3.3)
. CEG#V p— 0, (3.4)

A vector field £ that satisfies equations (3.2),(3.3) and (3.4) is called a curva-
ture collineation, a Ricci collineation and a matter collineation, respectively.
It is noted that equations (3.2), (3.3) and (3.4) do not necessarily mean that

¢ is a homothetic vector. We consider the Einstein equations
Gy = 87GT,,, (3.5)
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where T),, is the energy-moment
um tensor. If the spacetime is homothetic,

the energy-mom
e
. ntum tensor of the matter fields must satisfy

£eTu =0, (3.6)

through eqns (3.
ans (3.5) and (3.4). For a perfect fluid case, the energy-momentum

tensor takes the form of

T = (p + 1)uutty + pgu, (3.7)

where p and
P 1 are the pressure and the energy density, respectively. Then,

eqns (3.1) and (3.6) result in

Leu! = —aut, (3.8)
Lep = =204, (3.9)
Lep = —2ap. (3.10)

As shown above, for a perfect fluid, the self-similarity of the spacetime and

that of the physical quantity coincide. However, this fact does not necessarily

hold for more general matter fields.

3.2 Kinematic Self-Similarity

olutions can contain several interesting matter fields,

Although homothetic s

the matter fields compatible with homothety are rather limited. In more gen-

eral situations, matter fields will have intrinsic dimensional constants. For
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xampl 3 . :
e ple, when we consider a polytropic equation of state, such as p = Kpu7,

the constant K has dimension M'=7L30-1 " where we should be reminded

that we have chosen the light speed ¢ to be unity. We can also consider a
massive scalar field, where the mass of the scalar field has dimension M.

In such cases, it is impossible to assume homothety because the system has

a characteristic scale. By analogy, we can consider the general relativis-

tic counterpart of incomplete similarity (Coley, 1997). From comparison
with self-similarity for a polytropic gas in Newtonian gravity, kinematic self-
similarity has been defined in the context of relativistic fluid mechanics as an
example of incomplete similarity. It should be noted that the introduction of
incomplete similarity to general relativity is not unique. For example, partial
self-similarity has been defined and applied to inhomogeneous cosmological
solutions.

A spacetime is said to be kinematic self-similar if it admits a kinematic self-

similar vector £ which satisfies the conditions
Lehy,, = 20h,,, (3.11)

Leuy, = auy,, (3.12)
where u* is the four-velocity of the fluid and h,, = gu.+u,u, is the projection
tensor, and o and & are constants (Coley, 1997). If § # 0, the similarity
transformation is characterized by the scale independent ratio a/4, which is

referred to as the similarity index. If the ratio is unity, £ turns out to be a

homothetic vector. In the context of kinematic self-similarity, homothety is
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referred to as self-similarity of the first kind. If a =0and d # 0, it is referred
to as self-similarity of the zeroth kind. If the ratio is not equal to zero or
one, it is referred to as self-similarity of the second kind. If a # 0 and § = 0,
it is referred to as self-similarity of the infinite kind. If § = a = 0, £ turns
out to be a Killing vector.

From the Einstein eqn (3.5), we can derive
LeG,, = BTGLT,, (3.13)

This equation is called the integrability condition. Now we can rewrite the
integrability conditions (3.13) in terms of kinematic quantities of the fluid.
The covariant derivative of the fluid four velocity is decomposed into the

following form:

1
Uy = Opy + §6huv + Wy — UL, (3.14)
where

apw = h?phy)uKA: (315)

6 = ¢"0u, (3.16)

1

O = pr_EOh,uw (317)

ww = ARhy U, (3.18)

R %wp,,w‘“’, (3.19)

uy = uu;vuy) (320)
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where the semicolop denotes the Covarian

tderivative. Using the above qu

N - an-
tities the Integrability conditiop

(3.13) IS rewritten as follows

(0~ a)(~8uw? — 24%) — g, 1 3

K ) G E(Cgu + 20’!1.) + E(Efp + 20;})] ) (321)
206~ a)(6+ 62 — g2 _ 3 3
2wy, 0”4 2wy — dwly, = 0, (3.23)

Orp—Up0), 0" — g
Ap—UpOy, U UrT,,u +90Ap+0’)\,‘w;+0'pxw:+2w§wﬁp+§h)\pw?:0. (3.24)

For the first-kind case, in which o = § # 0, eqns (3.9) and (3.10) are obtained

-When a perfect fluid is irrotational, i.e., Wy =

0,the Einstein equations and the integrability conditions
(Collay , 1997)

from eqns (3.21) and (3.22)

(3.21) - (3.24) give

(@=6)R,, =0, (3.25)

where R, is the Ricci tensor on the hypersurface orthogonal to u#. This

means that if a solution is kinematic self-similar but not homothetic and if

the fluid is irrotational, then the hypersurface orthogonal to fluid flow is flat.

3.3 Spherically Symmetric Self-Similar Solu-
tions

Although self-similar solutions can play important roles even in nonspheri-
cally symmetric solution, such as homogeneous cosmological models (Wain-

wright, 1990), we focus in the rest of this section on spherically symmetric
) ’
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spacetimes. The line element in 4 spherically symmetric spacetime is given
by

ds® = —e(tr) g2 e “Idr? 4 R(t, r)2d0?, (3.26)

where dQ? = g2 5in?6dg?,

We consider a perfect fluid as a matter field,
for which the energy-

momentum tensor is given by eqn (3.7). We adopt

the comoving coordinates, where the four-velocity of the fluid w* has the

components

U, = (-e?,0,0,0). (3.27)

Then, the Einstein €quations and the equations of motion for the perfect

fluid are reduced to the following simple form:

(k+p)dr = —p,, (3.28)
(B+p)y = —uf—2(u+p)%—, (3.29)
m, = 4npR,R? (3.30)

my = —d4mpR,R?, (3.31)

0 = =Ry +¢.R+ YR, (3.32)

2Gm = R(1+e *YR? - e 2R?), (3.33)

here the subscripts ¢ and r denote the partial derivatives with respect to ¢
w
d r, respectively, and m(t,r) is called Misner-Sharp mass. When a perfect
anar, )
= ich i ivalent to a cosmological
i ion state p+ p = 0, which is equiva
fluid obeys an equation s

tant, the first two equations are trivially satisfied. In this case, one can
constant,



use the following equations:

¢ [ R, R,
.- i 3 il 2¢—24 Rrr 2
R {( R) = th} + e*®-2 {Z—E- — 2%—1{;,, + (%—) ] = —87TG}£82¢,
3.34)
G_Q_i 2y —2¢ Rtt Rl R 2 (
= 2R 2Rt (‘E) ] - [(%—)2 + 2%@] = —8nGpe®”,
(3.35)
e (wu + 97— pap + D R R“”T)
R R R
g R R,
(& (¢rr + ng - ¢r¢r + _ﬁ + }E;‘%d)‘— - R;;br) = —SWGP: (336)

which are (tt), (rr) and (66) component of the Einstein equations, respec-

tively. Five of the above nine equations are independent.

3.4 Spherically Symmetric Homothetic Solu-

tions

There is a large variety of spherically symmetric homothetic solutions. The
pioneering work in this area was done by Cahill and Taub (Cahill and Taub,
1971). The application contains primordial black holes (Hawking, 1974), cos-
mological voids, cosmic censorship (Lake, 1992) and critical behavior (Chap-
tuik, 1993), respectively. The classification of all spherically symmetric ho-
mothetic solutions with a perfect fluid has been made by Carr (Carr, 2000)..
The spacetime structure possible for homothetic solutions has been studied

by Carr (Carr, 2003). The special case where the homothetic vector is or-
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thogonal or parallel to the fluid flow has also been studied by Coley (Coley,

1991). It has been revealed that a homothetic solution describes the dynami-

cal properties of more general solutions in spherically symmetric gravitational

collapse. The stability of homothetic solutions has been studied by Harada

(Harada,. 2001).

When the homothetic admits a homothetic vector, which is neither parallel

nor orthogonal to the fluid flow, the homothetic vector § can be written as

0 d

and the self-similar variable £ is given by

.
=

Homothety implies that the metric functions can be written

ds* = —e2¢(£)dt2 + cQNP(C)dr? + TQS(E)QdQQ.

(3.37)

(3.38)

(3.39)

As we have seen, the equation of state must be of the form p = Kpu for ho-

mothetic spacetimes. Then the governing equations for homothetic solutions

are written as

a TRy TR,
aun RS,
nS*(S +5),
-KnS*S',

L+ 07} (g ) ¥RE2S™ — R SY(S + S,
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where a, and a i i
v w 8Ie€ Integration constants and the prime denotes the deriva-

tive with respect to Ing. The dimensionless functions n

(€) and M(¢) are
defined by
Ui
87Gu = op (3.45)
2Gm=rM. (3.46)

The above formulation is based on Cahill and Taub (Cahill and Taub, 1971).1t

is possible to choose another function in the same comoving coordinates, as

adopted in Carr (Carr, 2000).In the comoving coordinates, the dynamical

properties of the fluid elements are very clear.

There are other useful formulations in analyzing homothetic solutions. One
of the most natural coordinate systems for homothetic spacetimes is the
so-called homothetic coordinates.In terms of this coordinate system, the dy-
namical systems theory has been applied to homothetic solutions with a
perfect fluid for classification. In the homothetic coordinates, the self-similar
variable is chosen to be the spatial or time coordinate, depending on whether
the homothetic vector is timelike or spacelike. If the homothetic vector is

timelike, the line element is written as
ds? = ¢*[—D?(z)dt* + dz* + D3(z)dQ?). (3.47)
If the homothetic vector is spacelike, the line element is written as

ds? = e¥[dt® + —D}(t)dz” + Dj(t)d%). (3.48)
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If the homothetic vector is timelike ip one region and spacelike in another

region of the same spacetime, the above two charts must be patched on the

hypersurface on which the homothetic vector is null.

Another coordinate system is that of area coordinates, in which the physical
properties of the spacetime are clear. The area coordinate system has been

adopted by Ori(Ori, 1990). In this coordinate system, the line element in

homothetic spacetimes is written as

ds® = —eM®@ge? 4 e2¥(z2)dr? + r2dQ?, (3.49)
.
0 0 d
2_ > _ t Lo r 2
T Ulz)g +u (2)zp (351)

where u! and u" are also to be determined.

3.4.1 Spherically Symmetric Kinematic Self-Similar So-

lutions

A kinematic self-similar vector may be parallel, orthogonal or tilted, i.e.,
neither parallel nor orthogonal, to the fluid flow. Spherically symmetric
kinematic self-similar perfect fluid solutions have been recently explored by
several authors.

In a spherically symmetric spacetime, the kinematic self-similar vector field

¢ is written in general as
0 o)
£ = h’l(t1 T)5£ + h?(t! r)al (352)
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in the comoving coordinates, where hi(t,7) and ha(t,r) are functions of t

and r. When h, = 0,¢

is parallel to the fluid flow, while when h, = 0,¢ is
orthogonal to the fluid flow. When both h; and h, are nonzero, £ is titled.

When the kinematic self-similar vector € is titled to the fluid flow and not

of the infinite kind, £ and the metric tensor g,, are written in appropriate

comoving coordinates as

s, d
= t i K
§ (a 4-{3)6,1t s (3.53)
ds? = —e®Ogs? 4 WOg2 | 26612402, (3.54)

where a is the index of self-similarity. For a = 1, i.e., homothety or self-
similarity of the first kind, we can set 8 = 0 and then § is given by £ = r/t.
For a = 0, i.e., self-similarity of the zeroth kind, we can set 8 = 1 and then
{isgivenby { =r/e'. Fora#0and a # 1ie. self-similarity of the second
kind, we can set § = Oand then ¢ is given by ¢ = r/(at)'/e. If the kinematic
self-similar vector £ is titled to the fluid flow and of the infinite kind, £ and

the metric tensor g,, are written in appropriate comoving coordinates as

8 0
- — 3.95
5 - t3t+r8r' : (3.55)
2¥(€)
ds?® = —e®¥Ode? + S dr? 4 5(€)2d?, (3.56)

r2

where the self-similar variable is given by € = r/t. If the kinematic self-

similar vector £ is parallel to the fluid flow and not the infinite kind, we have
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in appropriate Comoving Coordinateg as

6]
2 _ %
dS = __t2(a l)el‘b(r)dt2 4 thr‘Z + t28(r)2d92’ (358)

where « is the index of self—similarity and the self-

similar variable is given by
§ =1 If the kinematijc self-

similar vector § is parallel to the fluid flow and
of the infinite kind, we have

in appropriate comoving coordinates as

£ = tgi' (3.59)
d32 — __626[r)dt2

+dr? + S(r)2402 (3.60)

where the self-similar variable is given by ¢ = 7. If the kinematic self-similar

vector £ is orthogonal to the fluid flow and not of the infinite kind, we have
in appropriate coordinates

4 (3.61)
€ == Tg;.
ds? = —r*dt? + eV ar? 4 125124002 (3.62)

here « is the index of self-similarity and the self-similar variable is given
w

by { = t. If the kinematic self-similar vector ¢ is orthogonal to the fluid Aow
y = 1.

d of the infinite kind, we have in appropriate coordinates
an

) (3.63)
E = TE,
At 2402 (3.64)
ds? = —r’dt’ + ——dr’ + S(t)%d?, '
- A
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where the self-similar variable is given by E=t

Not as homothetic solutions in the titled case, kinematic self-similar solutions

have a characteristic structure. We now show an example of them in the case

of self-similarity of the second kind, where a kinematic self-similar vector is

titled to the fluid flow. In this case, the Einstein equations imply that the

quantities m, u and p must be of the following form:

26 2
S = M) + S My(e), (3.65)
BrGurt = Wi() + L Wa(e). (3.66)

) 2
8nGpr’ = Pi(£) + a2 P2(6), (3.67)

where £ = r/(at)'/®. In other words, dimensionless quantities on the left
hand side are decomposed into two parts, one remains constant and the
other behaves as (r/t)? & r?!~°las ¢ is fixed. Then, the original partial
differential equations are satisfied for each of the O(1) and O((r/t)?] terms.

The eqns (3.28)-(3.35) for a perfect fluid then reduce to the following:

M +M = W,5%(S+S), (3.68)
3My, + M), = W,S*S+ "), (3.69)
M, = -PS§*S, (3.70)
2aMy + My = -PSS, (3.71)
M, = Sl-e?(S+59)}, (3.72)
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o*M, = 5522 (3.73)

(P + W) = 2P - P, (3.74)
(PR+ W) = —P. (3.75)
WS = —(P+W)(¥'S+25), (3.76)
(2aW, + WHS = —(Py+W,)(¥'S+25),  (3.77)
S"+5 = SP+(S+9)V, (3.78)

S(S' +2V'S) = a*W,S%*?, (3.79)

25(S" +28') — 2¥'S(S+S') = -S* -5+ eV (1 — W, 5?%), (3.80)

25(S" + aS' — #'8') + 8% = —a’PS%e™, (3.81)

(S+8)S+S5+20'S) = (1+ P,S%)e?, (3.82)

where we have omitted the bars of ® and % in (3.55) for simplicity and the

prime denotes the derivative with respect to In€. A similar structure of basic

equations can be found for kinematic self-similar solutions of the second,

zeroth and infinite kinds both in the titles and orthogonal cases and of the

second and zeroth kind in the parallel case. The exceptions are the first
kind in the titled, parallel and orthogonal cases and the infinite kind in the

parallel case.

It is interesting to consider the spherically symmetric self-similar solutions
of the infinite kind with a kinematic self-similar vector parallel to the fluid
The metric form demanded by this self-similarity, which is given by

flow.
g but the general form of the line element in spherically

eqn(3.61), is nothin
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symmetric static spacetimes when the chosen radial coordinate is the radial
PbYSiC&l length. Therefore, all static solutions have a kinematic self-similar
vector of the infinite kind that is parallel to the fluid flow. Inversely, all
spherically symmetric solutions with a kinematic self-similar vector of the

infinite kind parallel to the fluid flow are static. The equation of state is not

restricted at all.
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Chapter 4

Self-Similar Cosmological

Solutions with Scalar Field

4.1 Introduction

Scalar fields have come to play a dominant role in recent years in theoretical
models of the universe. This has usually been in the context of inflationary
models of the very early universe where the self interaction potential energy
density V(¢) remains undiluted by the cosmological expansion. If the po-
tential is sufficiently flat this can lead to an effective cosmological constant
which can drive an accelerated expansion. The detailed nature of the evolu-
tion is driven by the specific from of the scalar field’s potential energy.

Self-similar homogeneous cosmological solutions are invariant under a global

conformal rescaling of the matric. Such models may be expanding, but the

——
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physical state at different times differ only by a change in the overall length

scale (Wainwright, 1997). In a Friedmann- Robertson-Walker (FRW) cos-

mological model this is equivalent to a rescaling of the cosmic time,

t— T, (4.1)

where T' is a constant. Self-similarity requires that the evolution of the scale

factor a(t) is a power-law, and the Hubble constant H = a/a o 1/t.
We will consider the evolution of spatially flat FRW cosmologies containing a
fluid, with density p, and pressure P, and a scalar field ¢ with self-interaction

potential V(¢). In general relativity, the Friedmann constant equation re-
quires

81G 1.
=T (o438 +V0)), (42

where Gy is Newton’s constant. Equation (4.1) then requires that the matter

H2

content is invariant under a rescaling p — I'"2p. Requiring P — '~2P for
all p then leads to a barotropic equation of state P = (y — 1)p where v is
a constant. Thus the familiar radiation (v = 4/3) or pressureless matter
(v = 1) dominated FRW models can be described as self-similar solution
with

a o t2/6n), (4.3)
A scalar field has kinetic energy ¢? /2 which only allows a constant shift of

the scalar field, ¢ — ¢ + ¢r, if we are to require ¢* — I'"2¢2. In order to
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obtain a self-similar solution we require in addition

V(g) = V(¢ + ¢r) = T2V (¢). (4.4)

which is only compatible with a non-interacting field, V/(¢) = 0, or an expo-

nential potential
V(¢) = Voezp(—Ako), (4.5)

where k2 = 87G y, A is a dimensionless constant and we have k¢r = (2/ A)inT.
FRW solutions for scalar fields with exponential potentials where the kinetic
energy and potential energy of the field remain proportional were proposed
as a model for power-law inflation in the early universe by Luchinn and
* Matarrese (Luchinn and Matarrese, 1993), and are the late-time attractor
solutions (in the absence of other matter) for A2 < 6. More recently atten-
tion has focused on the possible late-time evolution of scalar fields in FRW
cosmologies containing matter. Self-similar solutions are known for scalar
fields with exponential potentials whose energy density scales with that of
a barotropic fluid yielding the same time dependence given in Eq.(4.3) for
a barotropic fluid dominated solution (Wetterich, 1988). These scaling so-

1utions are the unique late-time attractors for sufficiently steep potentials

A2 > 3, (Copeland, 1988). Such a scalar fields is so successful at scaling

with the barotropic matter that the scalar field never comes to dominate the

cosmological dynamics.

In the next section we show that self-similar cosmological solutions are pos-

sible for scalar fields with simple power-law potentials if the scalar field has

79



motion reduce to an autonomous phase-plane whose fixed points correspond

to .self-similar solutions.

4.2 Brans-Dicke-Type Cosmology with Power-
Law Potential

It is possible to obtain self-similar solutions for scalar fields with arbitrary
power-law potentials, V(¢) = Vo(k$)", if we go beyond Einstein’s theory
of general relativity and allow the field to be non-minimally coupled to the
spacetime curvature. In Brans-Dicke gravity (Brans and Dicke, 1961) with
dimensionless parameter w, Newton’s constant is replaced by a dynamical

field G = w/(21¢?) and the generalised Friedmann equation requires

87 w
2-—.—
i 3 2m@?

In the original Brans-Dicke theory where V(¢) = 0, eqn(4.1) is compatible

i 8.2
(p+§¢ +-2;H¢d>)- (4.6)

with a global rescaling of the barrotropic fluid density p — I';p and ¢ —

T.ofor all T,/T%3 = I'"2. The self-simijlar solution for a barotropic fluid in
o o/T4 Vo

Brans-Dicke gravity was given by (Nariai, 1968). In the presence of a power-

h

low potential, V(g) = Vo(k$)?™, we require in addition that V(¢)/¢* —
r-2[V(4)/¢?] which specifies ¢ — r-1/-1¢ and p — [~*/(""Vp. Thus
self-similar solutions can exist for ”quintessence”-type power-law scalar field

potentials (Caldwell et al, 1998), so long as this scalar field has Brans-Dicke

type coupling to the spacetime curvature.
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scalar field has Brans-Dicke type coupling to the spacetime curvature.

Motivated by the preceding qualitative discussion of self-similar solutions
we examine the cosmological evolution of one of the simplest forms of non-
minimal coupling proposed by (Brans-Dicke, 1961) which is described by a
single dimensionless parameter w. In addition to the original Brans-Dicke
lagrangian (Brans-Dicke, 1961), we introduce self interaction potential V()

(Barro, 1990). The action is
1
S= / V _gd4I[i‘8—w¢2R + %9“u¢,;4¢.u - V((b)]

it / \/"_gddxcmattcr (47)

where upper/lower signs should be chosen to ensure 4+w > Oand hence a

positive gravitational coupling. The self-interaction potential is taken to be

a power-law,

V(g) = Vo(ke)™ (4.8)

This action can be re-expressed as a theory of interacting matter fields in

general relativity with fixed Newton’s constant Gy (Dicke, 1962) if we de-

fine quantities in the conformally related Einstein frame with respect to the

rescaled metric

',{2 ¢2

- 4.9
T 9y (4.9)

Juv =

The scalar field is now minimally coupled to metric gy, but non-minimally

coupled to the other matter fields. We will re-express the scalar field ¢ in

terms of a field 1 which has a canonical kinetic term in the Einstein frame,
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which requires that

KO = erp (-—_L)
234+ 20) )
The scalar field will have non-negative |

(410

e : P ;
*nergy density in the Einstein frame

so long as w > —3/92. ,
/% Thus e consider w with any value > -3/2. which

includes, for .
example, the coupling of the string-theory dilaton where w

(Schwarz, 1988).

= -1

The e i - : .
ffective self-interaction potential for canonical field v in the Einstein

frame is of exponential form and given by Coley et al (Coley et al, 1999)

- 4w \? .
V() = (’—g%) V(¢) — Voexp(—Axy), (4.11)

where V, = (4w)?V, and

(2-n). (4.12)

4.3 Autonomous Phase-Plane

Using the Hubble rate, H, fluid density, p, and scalar field density, p, =
(1/2)(dxp/di)? + V(¢), defined in the Einstein frame, the equations are

dH (. - (dd))2 .
— Ol =T ] 4 \-'
= 5 (p+P+ di (4.13)
43 . aii(ss P 39
= +3H(p+P)= R (4.14)
dp (d 4V ,gdv) & 415
37(;;?*,1.;,*3”4; ai’ (.19
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subject to the Friedmann constraint,
2 2
. w  L.Jdd -
H? = i = f] et
3 (‘” 2 (df) ' VW))) ' 10

The non-minimal coupling of the scalar field in the Brans-Dicke frame leads

to an explicit energy transfer in the Einstein frame, between the scalar field

and the fluid,
dQ _ d% [p-3P
d ~"d \3vow (4.17)

The same system of equations was considered, starting from a different mo-

tivation, by Wetterich (Wetterich, 1995), and more reently by Amendola
(Amendola, 1999). In the case dQ/dt = 0, these equations reduce to pre-
vious studied of minimally coupled scalar fields with exponential potentials
(Copeland et al, 1998).

We define,

ok (dy _ =V

The evolution equations for a barotropic fluid where P = (7 —1)j can then

be written as
' = -3z + )\\/gy2 + %z[?xQ +y(1-z? =)+ W1 -2 -¢%), (4.19)

9 = -—)\\/gzy + %y[%z + (1 - x* — yz)]' (4.20)
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straint equation,

2_
K
ﬁ%+zz+y2=l. (4.21)

We parameterise the energy transfer in terms of the dimensionless quantity

W=,/ 3 (4_3"> (4.22)
342k 2 4"

eqns (4.19) and (4.20) define an two-dimensional autonomous phase-plane

W, where

whenever W can be written as function of z and y. The Brans-Dicke-type
theory defined in eqn(4.7) naturally leads to an interaction with constant W,
although the analysis could be extended to more general W(z,y) (Billyard,
1999).

The constraint eqn (4.21) restricts physical solutions with non-negative fluid
density to 0 < 22 + 32 < 1 and so the evolution is completely described
by trajectories within the unit disc. In the following discussion we will only

consider expanding cosmologies corresponding to the upper-half disc, y = 0.

4.4 Self-Similar Solutions

Fixed points of the system, (zi,v:) where ' = 0 and 3’ = 0,correspond
to power-law solutions for the scale factor and logarithmic evolution of the

scalar field with respect to the cosmic time in the Einstein frame:

aox i kY o glnt, (4.23)
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where the constants p and g are given by
- 2
3v(1 — 22 — ¢2) + 622
Ty — y?) + 6z
q,_ . 2\/611:1'
37(1 — 22 — 42 o
g II y: ) * GIi

These are self-simj ' -
similar solutions where the dimensionless density parameter for

(4.24)

the barotropic fluid in the Einstein frame, given from the constant eqn(4.21)

= K
5 F= el S P W (4.25)

1s a constant and therefore so is the dimensionless density of the scalar field
Q=12+ 2. (4.26)

The scalar field has an effective barotropic index given by,

- pw + Py 21
Ty = Ry (4.27)

The existence and stability of critical points, already defined in the Ein-
stein frame, remain unchanged under a conformal transformation back to
the Brans-Dicke frame. The evolutionary behaviour for the scale factor and

scalar field is however modified. If we denote the evolutionary behaviour of

the scale factor a and scalar field ¢ in the Brans-Dicke frame by,
a~tt, ¢~ (4.28)

the Einstein frame by,

PN 0
P V2(3+2w)—¢

exponents can be related to those in

)

o0
o=



2
R 18

Depending on t
? 5 he values of the parameters A,y and W we can have

up to

five fixed points i . )
points in the Einstein frame. The nature and stability of each point

in the phase-plane is briefly below.

4.4.1 2- Way, Matter- Kinetic Scaling Solution

QW
3(2-7)’

This solution lies on the z-axis where the scalar field potential is negligible,

I, = Yy, = 0. (430)

and the scalar field’s density in the Einstein frame is dominated by its kinetic

energy, leading to a stiff equation of state for the scalar field, vy =2 We

have a power-law solution of the form given in eqn(4.23) with

5 = 6(2 - 1)
P 9q(2—9) +4W?Y

. W
@ =92 =) + AW

(4.31)

In the Brans-Dicke frame these are the power law solutions for a barotropic
fluid in Brans-Dicke gravity as first given by (Nariai, 1968), where the power

law exponents of the scale factor and scalar field are given by

B w(2—17) +2
Pr= 302 -7)+4
2(4 - 3r)

(4.32)

a1 = 3w7(2"7) +4

S0



4.4.2 i i
Kinetic Dominated Solutions

the kineti
€ energy of the scalar field with, a stiff equation of state 7, = 2. We

have power-law solutions of the form given in Eq.() with

P23 =1/3, o3 = +£1/2/3. (4.34)

In -Di
the Brans-Dicke frame we recover the vacuum solutions of Brans-Dicke

gravity found by (O’Hanlon , 1972) with power-law exponents given by

_ V6F 2B+ W)
V6 F3,/2(3 + w)’

+2v6

P23

Q23 = 3206 + 20) T /0 (4.35)
4.4.3 Scalar Field Dominated Solutions
24 = MV, ye = (1 — A2/6)'/? (4.36)

Here the fluid density is negligible, but neither the kinetic energy, nor the
potential dominates the energy density of the scalar field in the Einstein

frame. The scalar field has an effective equation of state 4y = A%/3, and for
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2 n 5
A% < 2 this solution correspond to power-law inflation (Lucchin, 1985). For

)\_# 0 we have power-law solutions of the form given in eqn(2.18) with

2 ]

p4 = :\—2: qd (4'37)

2
3
In the Brans-Dicke frame the power-law exponents are given (for n # 1 and

n # 2) by (Barrow, 1990)

By = 2w+n+1
T Bemi=a)
2
q4 = (4.38)
1-n

For n = 0 the potential acts like a false vacuum energy density in the Brans-
Dicke frame and this corresponds to extended inflation solutions for w > 1/2.

For n = 2 it is the potential in the Einstein frame that remains constant,
leading to de Sitter expansion. The case n = 1 was studied by (Kolitch,

1996).

4.4.4 3-Way, Matter-Kinetic-Potential Scaling Solutions

IR » S
s = Jor—ow’
97(2 — 7) — 2W(v/6) — 2W)

Here neither the fluid nor the scalar field dominates the evolution, and we

have self-similar solution where both the potential and kinetic energy density
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of the scalar field remains proportional to that of the barotropic matter. The

eﬂective equation of state for the scalar field is given by,

gs = 6y
e (67 —W(V/6) - 2W)) ' (4.40)

We have power-law solutions of the form given in eqn(4.18) with (Amendola,

1999)
.2 (Ver-2w 2
ps = | ——— G = —. 4.41
3y ( Jo ) FTA (d:dt)
In the Brans-Dicke frame this corresponds to power-law evolution with ex-
ponts given by,
2 n 2
= — = 42
Ps 37(71-1), qds 1—-11' (44)

As far as we are aware, this solution has not been discussed before in the

context of Brans-Dicke gravity. It is interesting to note that the cosmolog-

ical evolution in the Brans-Dicke frame is independent of the Brans-Dicke

parameter w, although it does determine the existence of this 3-way scaling

solution.

89



Figure 4.1: The profile of the self-similar self-interaction potential of scalar
with scalar field o and dimensionless constant )

field V' (¢)
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Figure 4.2: The Proﬁle of the scalar field K¢

with transformed scalar field ¥ and dimensionless parameter w

91



P

Figure 4.3: The comparision of the dimensionless constants p and ¢ of the

scalar field with varying the function of ,
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Figure 4.4: The comparision of the dimensionless constants p, and §, of the

scalar field with varying the function of v
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Figure 4.5: The comparision of the dimensionless constants p1 and ¢ of the

scalar field with varying the function of ~
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Figure 4.6: The comparision of the dimensionless constants p, and g4 of the

scalar field with varying the function of n
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Figure 4.7: The animation plot of an exponantial potential V' (¢)
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Figure 4.8: The animation plot of the variable Hubble parameter H
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Chapter 5

Results and Concluding

Remarks

In this thesis some fundamental notions and basics of self-similar spacetime
are given and attempts are made to derive the path of photon using simple
tractable methods. The Kretschmann scalar is also calculated for spheri-
cal symmetric spacetimes metric. It is possible to examine the curvature
strength of naked singularity. It has been found that the points of unbound-
edness occur at (ar,r), i.e, self-similar points. At this point it can be noted
that the case of the naked singularity arising due to gravitational collapse of
self-similar null dust. The origin of the coordinate there is a naked singularity
which is a node and an entire family of non-spacelike geodesics escape, ex-
posing the singularity to a distant observer for an infinite time. The possible
path of photon has been derived explicitly and visualization of this possible

path is done.
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The introduction of self-similarity into Newtonian gravity is straightforward
pecause it is the theory with absolute space time. Since Newtonian gravity
has only one dimensional constant, i.e, the gravitational constant, we can
incorporate it into a polytropic gas as well as isothermal gas to transform
them into the frame work of similarity. Self-similar solutions are derived and
visualizations of some results are done with the help of Mathematica.

The introduction of self-similarity to general relativity is not so straight-
forward since there is no prefered coordinate system in this theory. The
covariant definition of complete similarity is homothety, and it is impossible
to incorporate many physically interesting quantities, such as a polytropic
equation of state, into the framework of homothety. It has been assumed
that one of the most natural definitions of incomplete similarity in the fluid
system in general relativity is kinematic self-similarity. Some self-similar Ein-
stein’s field solutions are obtained using tensorpack.m and some interesting
iterations carried out with the help of Mathematica.

Self-similarity cosmological solutions with scalar field potential have been
treated in chapter IV. It is advantageous to use the fact that self-similar
cosmological solutions are invariant under global conformal rescaling of the
metric and they would differ only by a change in overall length scale. Rescal-
ing of the physical quantities, including scalar field and scalar potential, we
are able to re-express the scalar field ¢ in terms of a field ¥». Autonomous

phase plane, self-similar and scaling exact solutions with scalar field are given
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and some animation plots are visualized using Mathematica

100



Bibliography

1 Amendola L 1999 Phys Rev D 60 043501
2 Billyard A P 1999 gr-qc/9908067
3 Brans C H and Dicke R H 1961 Phys Rev 124 925

4 Baenblatt G I 1996 Scaling “Self-similarity and Intermediate Astro-

physics” (Cambridge: CUP)
5 Bertschinger E 1985 Ap J 268 17
6 Cahill M E and Taub A H 1971 Commun Math Phys 21 1
7 Carr B J 2000 Phys Rev D 62 044022
8 Carr B J and Gundlach C 2003 Phys Rev D 67 024035
9 Carter B and Henriksen R N 1989 Ann Phys 14 47
10 Choptuik M W 1993 Phys Rev Lett 70 9

11 Coley A A 1997 Class Quantum Grav 14 87

101



12 Dicke R H 1962 Phys Rev 125 2163

13 Deshingkar S H et al 2002 arXiv:gr-qc 0111053

14 Joshi P S 1993 “Global Aspects in General Relativity” (Oxford: OUP)
15 Foster P N and Chevalier R A 1993 Ap J 416 303

16 Green M B Schwarz J H and Witten E 1988 “Superstring Theeory”
(Cambridge: CUP)

17 Harada T 2001 Class Quantum Grav 18 p 4549
18 Harada T Maeda H and Semelin B 2003 Phys Rev D 67 084003

19 Hewitt C G and Wainwright J 1990 Class Quantum Grav 7 2295

20 Hunter C 1977 Ap J 218 834

21 Holden D J and Wands D 1998 Class Quantum Grav 15 3271 gr-
qc/9803021

22 Lake K 1992 Phys Rev Lett 68 3129

23 Larson R B 1969 MNRAS 145 271

24 Nariai H 1968 Prog Theor Phys 40 49

25 Ori A and Piran T 1990 Phys Rev D 42 1068

26 Shu F H 1977 Ap J 214 488

102



27 Tolman R C 1934 Pro Nat Acad Sci 20 169

28 Wetterich C 1995 Astron Ap 301 321

103



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106

